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Inconsistency of Nonlinear Second-Order Equations of 
Motion of Classical Charges 

E. Comay 1 
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Problems of second-order equations of motion of elementary classical charges 
are discussed. Inconsistency of energy-momentum balance is pointed out. In 
particular, it is shown, probably for the first time, that Eliezer's equation does 
not conserve energy. The results favor the third-order equation of Lorentz-Dirac. 

1. I N T R O D U C T I O N  

The equation of motion of  a classical point charge is a debated subject. 
The existence of  several, mutually contradictory, equations of  motion pro- 
vide an indication of  this situation. Some differential equations of  this kind 
take the second-order Newtonian form and depend nonlinearly on external 
fields (Eliezer, 1948; Mo and Papas, 1971; Bonnor, 1974; Herrera, 1977). 
As a matter of  fact, specific proofs showing that all but the first of  these 
equations are unphysical have already been published by Huschilt and 
Baylis (1974) and Comay (1987). However, not all these equations have 
been refuted. Moreover, other equations belonging to this category may be 
published in the future. The present work points out an inherent problem 
which is common to all equations of this kind. This problem is unsettled 
by the above-mentioned equations and is the underlying reason for their 
unphysical properties. 

This work uses units where the speed of light c = 1. Greek indices range 
from 0 to 3 and Latin ones range from 1 to 3. The symbol ,~ denotes the 
partial differentiation with respect to xL The metric is diagonal and its 
entries are (1, - 1, - 1, - 1). ~" denotes the invariant time. 
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A fundamental property of relativity is the finite velocity of energy- 
momentum. As a result, energy-momentum move continuously and their 
density and flux must be defined at points of  the medium encompassing 
interacting charges. In the classical electrodynamics of  continuously charged 
matter, this requirement is accomplished by the construction of  an energy- 
momentum tensor of fields (Landau and Lifshitz, 1975, p. 81) 

1 
T~(~) = 4-7 ( F~*"FO~ g'*o + �88 F'~og~*") 

where F ~ is the tensor of fields 

F , ~ =  Ex 0 -Bz  By 
Ey Bz 0 
E~ -By  Bx 

(1) 

(2) 

The entries T ~~ are energy-momentum densities and T "i are energy- 
momentum currents. 

An electromagnetic energy-momentum tensor has to satisfy the 
requirement 

/ x v  - -  / x v  T(y ) ,~ , - -F  Jv (3) 

This relation shows that the theory conserves energy-momentum at vacuum 
points where J "  = 0. Using (3) together with the Lorentz force 

dp ~ 
= F~J~ (4) 

dr  

one verifies energy-momentum conservation at points where charge does 
not vanish. Thus, classical electrodynamics of  continuously charged matter 
conserves energy-momentum. 

2. THE PROBLEM OF POINT CHARGES 

The introduction of  elementary point charges alters the situation. The 
elementary nature of such a particle means that one cannot consider it as 
being made of distinct constituents (see, e.g., Rohrlich, 1965, pp. 127-129; 
Landau and Lifshitz, 1975, pp. 43-44). In the case of  continuously charged 
matter, effects of q2 can be ignored because one can always look at an 
infinitesimal amount of  charge. The interaction of this charge with an 
external field is linear in q, justifying the elimination of terms containing 
higher powers of q. This procedure is inapplicable to an elementary classical 
point charge q. For such a particle, effects of  q2 prove that it cannot satisfy 
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the Lorentz force (4). Indeed, take, for example, a light negative charge 
attracted by a massive positive charge which is held fixed at the origin. The 
velocity of the negative charge is perpendicular to its radius vector and all 
quantities are calibrated so that the attraction of the negative charge toward 
the origin provides the centripetal force required for keeping a uniform 
circular motion. Therefore, if an elementary point charge interacts only 
with external forces and if the Lorentz force (4) determines the charge's 
equation of motion, then one can build a closed system that emits radiation 
and whose state does not vary in time. Obviously, this process does not 
conserve energy and is physically unacceptable. 

An analysis of the motion of a classical point charge enabled Lorentz 
and Abraham to derive the Lorentz-Dirac (LD) equation (Rohrlich, 1965, 
pp. 11-18; Klepikov, 1985). This equation was derived later by other authors 
on the basis of various physical arguments (Dirac, 1938; Infeld and Wallace, 
1940; Wheeler and Feynman, 1945; Landau and Lifshitz, 1975; Teitlboim, 
1970; Barut, 1974). The LD equation can be put in the following form: 

2 2 d a "  
3q -~r  = m a "  - qFe~xtV,~ - ] q 2 (  a~ (5) 

where m and q denote the mass and charge of the particle, respectively 
and Fe~t is the tensor of the external fields, i.e., fields not associated with 
the particle's charge q. The LD equation is a third-order differential equation, 
which is inconsistent with the second-order Newtonian form. This point 
has motivated several authors to suggest alternative equations of motion of 
charges. Some of the suggested equations take the second-order Newtonian 
form and are characterized by a nonlinear dependence on external fields, 

~ , 2q 3 [d(F~,~v, , )  ~_(F,~a,~v~)v~] 
m a "  = q/"ext/3v -t"~m L ~ (6) 

..i 

2_23 
-~"  ' q ~ -~"  + ( F ~ a , ~ v ~ ) v  ~] (7) m a  ~ = q /~ex t~v  -'1- 3m I ' /~ex ta"  

ma r = qF~,~v,. + .~, ar ,~ ~,,. . [F~xtg,~xFextV~ +(F~xtV~gc~aF~xtv,,)v ] (8) 

d ( m v ~ ' )  ~,. 2 2 a p. 
=qF~xtV, ,+~q (a  a,~)v (9) 

dr  

Equations (6)-(9) have been suggested respectively by Eliezer (1948), Mo 
and Papas (1971), Herrera (1977), and Bonnor (1974). 

In (8) one sees explicitly that the 4-acceleration depends nonlinearly 
on fields. The other equations, (6), (7), and (9), are implicit expressions 
where a"  appears on both sides. It is easy to see that, casting each of these 
equations into an explicit expression of a ~" in terms of F~xt and v A, one 
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obtains a nonlinear dependence of a"  on external fields. Problems of the 
energy balance of such nonlinear equations are discussed in this work. 

3. ENERGY-MOMENTUM AND THE 
LORENTZ-DIRAC EQUATION 

g~v Consider the dimensions of the fields' energy-momentum tensor T(f). 
This discussion is carried out in units where h = c = 1. In these units charge 
and velocity are dimensionless, energy is measured in units of L -1, and 
electromagnetic fields are measured in units of  L -2. As is well known, T{~) 
is the fields' energy density (Landau and Lifshitz, 1975, p. 78). Therefore, 
it is measured in units of  L -4. Since T(~ ~) is a function of  fields alone, it 
must be a homogeneous quadratic function of F ~". This requirement is 
satisfied by (1). The energy-momentum gained by fields is the 4-divergence 

brv p~v 
�9 F ,~ = - 4 ~ - J "  and the fact that T(f) T(f),~ Using the Maxwell equation ~v 

is a quadratic function of  F ~ ,  one takes the 4-divergence T,~f and finds 
that energy-momentum gained by fields is linear in the current J~ and in 
the fields F ~ .  This result does not rely on the specific form of (1), but just 
on the linearity of the Maxwell equations and on the quadratic dependence 
of  T~f) on fields�9 

The overall electromagnetic field can be split as follows: 

= F e x t +  F i n t  (10) 
where the first term is associated with external charges and the second one 
is related to the charge q whose equation of  motion is discussed. In the 
case of  continuously charged matter, interactions of  an infinitesimal charge 
element belonging to q with other charged elements belonging to it are 
taken into account and every charged element interact with the entire field 
(10). As pointed out above, the elementary nature of  a classical point charge 
rules out the calculation of  such an interaction between its charged elements. 

Therefore, in the classical electrodynamics of  point charges one is left 
pv  with the linear interaction of q with Fex t whereas an appropriate compensa- 

tion has to be sought for the interaction with Fi~t. The interaction with the 
retarded expression of  this field depends on the specific motion of the 
charged particle. Therefore, it makes sense if one writes the appropriate 
substitute in terms of the particle's kinematic variables. This approach leads 
to the third-order LD equation (5) [see, e.g., Landau and Lifshitz, 1975, 
pp. 204-211, equations (76.1)-(76.2)]. 

4.  A D I L E M M A  O F  SECOND-ORDER EQUATIONS 

Contrary to the structure of the LD equation (5), other authors have 
attempted to restore the second-order Newtonian form and suggested 
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equations (6)-(9). In these equations the substitute for the contribution of  
Fi~t is written not in terms of  the charge's kinematic variables alone, but 
in terms of  these variables and of  Fe~xt as well. This point becomes evident 
if one rewrites (6)-(9) as explicit expressions of a ". 

This prescription raises the following question: a charge exchanges 
energy-momentum with its environment. As shown in (3) and derived also 
from the units used for the energy-momentum tensor, this quantity is linear 
in the particle's charge q and in the field F ~v. Therefore, it is not clear how 
an energy-momentum flux, which is linear in the fields, can be balanced 

Fex t. This dilemma is not by the matter equations, which are nonlinear in "~ 
settled by the authors who suggested (6)-(9). As a matter of fact, the 
counterarguments of Huschilt and Baylis (1974) and of Comay (1987) prove 
that equations (7)-(9) cannot settle this difficulty because of their incon- 
sistency with energy conservation. In the following section it is proved that 
Eliezer's equation (6) also does not satisfy energy conservation. 

5. THE ELIEZER EQUATION 

Assume a charge moving rectilinearly along the x axis from x = - ~  
toward x = ~ in an external static field. Along the x axis the external electric 
field takes the form E = (Ex, 0, 0). Let us evaluate the energy exchanged in 
the process. The static property of  the external field proves that the self- 
energy of  the external source does not vary during the process. Referring 
to  the moving charge, let us integrate the 0-compound of Eliezer's equation 
(6) with respect to the invariant time ~-. This is done separately for each 
term of the equation. 

The integration of the first term yields 

m f~-oo a~ dr= my(~) - rny( -oo)  (11) 

where the 4-velocity # ' =  (% yv, 0, 0), y =  ( 1 -  v2) -1/2, and v denotes the 
3-velocity of the particle. This quantity represents the change of the self- 
energy of  the moving charge during the entire process. 

Integrating the next term, one finds 

q F~ ~ d~" = q Ex dx 

= - q ~ ( o o ) + q ~ ( - ~ )  

=0  (12) 

Here the external static field Ex is derived from the potential ~:  Ex = 
-O~/Ox. The final null result is obtained from ~ (+o o )=  0. 
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The next term yields straightforwardly 

2q 3 d(FextV~) dr = [FO~tv~(oo) o~ - Fextv~(-oo)] =0  (13) 
3m d~" 

Here, as before, the vanishing outcome is obtained from the field's behavior 
at infinity. 

The integration of the last term yields a quantity denoted by We, 

2q3 f ~  "~ 
WE -~m-  (Fe• ~ dr (14) 

where, as mentioned above, v ~  3'. 
These results should be compared with the energy radiated by the 

system. The general formula of energy radiated by a system where just one 
charge accelerates is [see Landau and Lifshitz (1975), p. 194, or Rohrlich 
(1965), p. 111, but notice the different metric used in the latter book] 

WR -- 2q2 I ~ (a'~a,~)v ~ d'r (15) 
3 3-00 

An examination of ( 11)- (14) reveals that Eliezer's equation (6) is compatible 
with energy conservation if the integral (14) equals that of (15) multiplied 
by -1.  Evidently, in a check of self-consistency of Eliezer's equation, one 
has to use the acceleration as calculated by the equation. This is accom- 
plished by the replacement of a"  of (15) with Eliezer's acceleration (6). 

Writing 
d(FextV~.) dFext ~ 

- v,,+Fe• (16) 
d~- dr 

and substituting (6) into (15), one finds 

a,~a, = q  F~vt3a~4 2q 3 dFe~x~ , 2q___~ 3 ,~t3 
m 3m 2 d'r v~a,~-V3m 2 Fexta,a ~ 

2q 3 ~,8 ~ ,~ 
+-~---~m 2 (Fextaz, v~)v a,~ (17) 

An examination of the four terms on the right-hand side of (17) proves that 
the first term corresponds to WE of (14). The third term vanishes identically 
because it is a contraction of an antisymmetric tensor F ~  with a symmetric 
one ac, at3. Similarly, the last term vanishes because 

d d 
2v'~a'~ ="~r v'~v'~ =d-~z 1 =0  
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Fig. 1. A charge Q moves in the field of  charges 
distributed uniformly on two concentric spherical 
shells. 

The foregoing discussion proves that Eliezer's equation (6) conserves 
energy only if the following relation holds: 

l ~176 (dF~  ~ vo 
S=j_ook--~r voa~) dr=O (18) 

On the other hand, one can refute (6) by means of an example where (18) 
is not satisfied. This is done in the following experiment. 

Given a charge Q which moves along the x axis from -oo toward oo. 
Two very large spherical shells are concentric at the origin. The spherical 
shells are made of  insulating material and are covered uniformly with the 
same amount  of  positive and negative charges, respectively (see Figure 1). 
The difference between the radii of the shells is very small and the strength 
of  the field between them is practically uniform. The electric field of  the 
spherical shells vanishes at all space except at the region between the 
two shells. A description of this field as a function of points on the x 
axis can be seen on Figure 2. It shows four very short intervals 
(AI, A2), �9 . . ,  (DI,  D2) around A, B. C, and D, respectively, where the field 
varies linearly between zero and the full strength prevailing between the 
two shells. The motion of  the charge Q in the external field of the two 
spherical shells is considered. 

Assume that the moving charge obeys Eliezer's equation (6). The 
evaluation of  (18) is split into four integrals calculated along the very short 
intervals (A, ,  A 2 ) , . . .  , ( D I ,  D 2 ) .  The sum of  these four quantities is the 

A1 B2 

E 

C1 D2 

Fig. 2. The external field Ex drawn as a function 
ofx.  Scale of  the x axis is not uniform and portions 
where the field varies are elongated. 
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required integral because at all other parts of  the x axis, d E x / d x  =0.  Let 
us evaluate this integral at (A1, A2). The velocity of the moving charge does 
not vanish. As a result, due to the shortness of (Aa, A2), the time duration 
taken by the moving charge to travel along this interval is also very short. 
It follows that, at (A~, A2), the contribution of  the acceleration to the 
variation of  velocity is very small and this velocity can be considered a 
constant there. Therefore, v ~  3' is a constant, too, and it can be taken out 
of  the integral. Denoting the required integral by SA, one finds 

SA = I t - -  vt3a~,l dr  = - -  vt3ac, dr (19) 
Jr(A1) \ dr  ] J r ( A t  ) \ dr  

The integrand on the final form of (19) is an invariant. Therefore, it 
can be evaluated in the charge's rest frame, where one finds 

v ~ = (1, 0, 0, 0) (20) 

a s = (0,  a, 0,  0)  (21 )  

where a is the 3-acceleration in the rest frame. The charge moves along the 
x axis and a transformation into its rest frame does not alter Ex. Hence, 

d F  ~ = 0 0 0 (22) 
d~" 0 0 0 

0 0 0 

where G = d E J d r .  Substituting these results into (19), one obtains 

f ~(a2) dE~ vo dEX IAt2 = _ v  o dEx SA = --V ~ a dr  = a dx I (23) 
d~-(al) dr - ~ ~ dx  

where 

~ 2 

I =  a d x  
1 

and the integration is performed in the laboratory frame. At the interval 
(A1, A2), d E x / d x  is a constant, justifying its transfer out of  the integration 
operation. Analogous expressions are obtained for the integrals SB, So, and 
So, carried out on (BI ,  B 2 ) , . . . ,  (D1, D2), respectively. 

An examination of  (23) shows that the four integrals SA, SB, Sc ,  and 
So differ by a sign and by the factor v ~ = 3'. This conclusion is derived from 
the fact that the absolute value IdEx/dx[ is the same in the four cases and 
from the assumption that this relation holds also for [II. Notice also that 
the charge's velocity at B equals that of  C. Therefore, Sz  + Sc  = 0 because 
at B the acceleration and the field's derivative take opposite signs, whereas 
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they have the same sign at C. It follows that in the present experiment the 
quantity defined in (18) is 

(24) 

Now assume that Eliezer's equation conserves energy. Hence, the 
charge's velocity at the end of  the process must be smaller that its initial 
velocity. The corresponding difference in kinetic energy should balance the 
energy radiated. Hence, v~ > v~ Therefore, an examination of (24) 
proves that it does not satisfy (18) and the assumption that Eliezer's equation 
(6) conserves energy leads to a contradiction. 

The last result is obtained from the assumption that 

1I[= adx (25) 
l 

takes the same value at the four intervals (A~, A2) . . . .  , ( D 1 ,  D2). This is 
true if the acceleration a in the rest frame is the same at corresponding 
points of these intervals. Evidently, this assumption is accurate if the 
acceleration is obtained from the ordinary Lorentz force, because Ex does 
not vary under a Lorentz transformation associated with a velocity that is 
parallel to the x axis. Hence, the above-mentioned assumption concerning 
the integral I is inaccurate if Eliezer's equation is used instead of the 
ordinary Lorentz force. However, the difference v ~ 1 7 6  of  (24) is 
due to the radiation emitted during the entire process. In particular, this 
radiation takes place at the intervals (A2, Ba) and (C2, D1) whose length 
is an independent parameter. Therefore, a correction due to Eliezer's radi- 
ation reaction term, which is introduced into the calculation o f / ,  cannot 
compensate the discrepancy of  (24). This argument completes the proof  of 
the unphysical nature of  Elizer's radiation reaction equation (6). 

6. CONCLUSIONS 

It is shown above that second-order equations of motion of charges 
that depend nonlinearly on external fields face a serious problem of energy 
conservation. The necessity of  defining an energy-momentum tensor T ~'~ 
in terms of  the fields leads to a quadratic expression TU~(F~). Using 
Maxwell's equations, one finds that the 4-divergence of this tensor is linear 
in the current of  charged matter and in the overall electromagnetic fields. 
These conclusions show that it is very unlikely that one can contrive an 
energy-momentum-conserving equation of  motion of charges which is non- 
linear in the external fields. Indeed, the work of Huschilt and Baylis (1974) 
and of Comay (1987) proves that equations (7)-(9) do not satisfy energy 
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conservation. The present work discusses Eliezer's equation (6) and proves 
that, like other equations of  its kind, it does not conserve energy. These 
conclusions provide an indirect support to the third-order LD equation (5). 

REFERENCES 

Barut, A. O. (1974). Physical Review D, 10, 3335. 
Bonnor, W. B. (1974). Proceedings of the Royal Society of London A, 337, 591. 
Comay, E. (1987). Physics Letters A, 125, 155. 
Dirac, P. A. M. (1938). Proceedings of the Royal Society of London A, 167, 148. 
Eliezer, C. J. (1948). Proceedings of the Royal Society of London A, 194, 543. 
Herrera, J. C. (1977). Physical Review 19, 15, 453. 
Huschilt, J., and Baylis, W. E. (1974). Physical Review D, 9, 2479. 
Infeld, L., and Wallace, P. R. (1940). Physical Review, 57, 797. 
Klepikov, N. P. (1985). Soviet Physics Uspekhi, 28, 506 [Uspekhi Fizikh Nauk 146, 317]. 
Landau, L. D., and Lifshitz, E. M. (1975). The Classical Theory of Fields, Pergamon, Oxford. 
Mo, T. C., and Papas, C. H. (1971). Physical Review D, 4, 3566. 
Rohrlich, F. (1965). Classical Charged Particles, Addison-Wesley, Reading, Massachusetts, 

pp. 11-25. 
Teitlboim, C. (1970). Physical Review/9, 1, 1572. 
Wheeler, J. A., and Feynman, R. P. (1945). Review of Modern Physics, 17, 157. 


